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Abstract. We prove the existence of at least one globally attractive mild solution
to the equation

∂t(b ∗ [x− h(·, x(·))])(t) + A(x(t)− h(t, x(t))) = f(t, x(t)), t ≥ 0,

under the assumption, among other hypothesis, that A is an almost sectorial operator
on a Banach space X and the kernel b belongs to a large class, which covers many
relevant cases from physics applications, in particular the important case of time-
fractional evolution equations of neutral type.

1. Introduction

Existence of globally attractive solutions for mathematical models is a very chal-
lenging topic that is drawing the attention of many researchers in the last decade.
For instance, Alzabut and Abdeljawad in [1] studied the existence of a globally at-
tractive periodic solutions of an impulsive delay logarithmic population model. Bar-
tuccelli, Deane and Gentile [3] analyzed globally and locally attractive solutions for
quasi-periodically forced systems, and Li and Cheng [8] established conditions for the
existence of globally attractive periodic solutions of a perturbed functional differential
equation. In general, the attracting character of the solutions can be deduced by dif-
ferent methods. For instance, using a result due to Tang [14], or via the measure of
noncompactness due to Banás [2]. In this paper, we will take this last approach.

In a paper of Liang et.al. [9] the existence of globally attractive mild solutions to
the Cauchy problem, for fractional evolution equations of neutral type in the form

(1) ∂qt (x(t)− h(t, (x(t))) + A(x(t)− h(t, x(t)) = f(t, x(t)), t > 0, 0 < q < 1,

was proved. Here, the fractional derivative is understood in the Caputo sense and A
is an almost sectorial operator.

Since the fractional derivative of order α > 0 is defined by means of the finite
convolution of a given function and the special kernel

gα(t) =
tα−1

Γ(α)
, t > 0,
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where Γ denotes the Gamma function, it is natural to ask if it is possible to replace this
particular kernel gα for a more general kernel b(t). This approach has been taken for
some authors in the last time in order to relax the properties of the memory kernel gα,
which is the main responsible of the behavior and qualitative properties of fractional
models. This leads to the analysis of equations in the form:

(2) ∂t(b ∗ [x− x0])(t) + Ax(t) = f(t, x(t)),

with initial datum x(0) = x0. In this way, the non-local time term on the left hand
side includes such classical cases as the Riemann-Liouville and the Caputo fractional
derivatives, respectively, for convenient choices of b. For instance, Kemppainen et.
al. [6] and Vergara and Zacher [15] studied decay estimates for non-local in time
subdiffusion equations in the form (2) when A = −∆, the Laplace operator on RN .
It should be noted that in [6] and [15] the kernel b satisfies the following remarkable
property:

(PC) b ∈ L1
loc(R+) is nonnegative, and nonincreasing and there exists a kernel a ∈

L1
loc(R+) such that a ∗ b ≡ 1 in (0,∞).

In particular, if b satisfies condition (PC) then a is completely positive cf. [4, Theorem
2.2] or [13, Remarks on p.326]. For example, for b(t) = g1−α(t) we have a(t) = gα(t)
where 0 < α < 1. Another very interesting example is given by

(3) b(t) =

∫ 1

0

gβ(t)dβ and a(t) =

∫ ∞
0

e−st

1 + s
ds.

In this case the operator ∂t(b ∗ ·) is a so-called operator of distributed order, see e.g.
[7]. More examples are discussed in [15, Section 6].

This paper is inspired by the papers [9] and [6, 15] and on the equations (1) and
(2), respectively. Since one of the outcomes of [9] was an existence result of attractive
mild solutions, we wish to extend this analysis to the following class of equations

∂t(b ∗ [x− h(·, x(·))])(t) + A(x(t)− h(t, x(t)) = f(t, x(t)), t ≥ 0.

Our initial observation is that under the hypothesis of the condition (PC) the above
equation is equivalent to the following class of abstract integral Volterra equations

(4)


x(t)− h(t, x(t)) +

∫ t

0

a(t− s)A[x(s)− h(s, x(s))]ds

=
∫ t

0
a(t− s)f(s, x(s))ds+ x0 − h(0, x0),

x(0) = x0,

Motivated by this observation, we ask ourselves: Under which conditions on a general
kernel a(t) there exists globally attractive mild solutions for the abstract model (4)?

Our purpose in this paper is to provide an answer to this question. Roughly speaking,
we find the following class of kernels:

(K) a ∈ C((0,∞)) ∩ L1
loc(R+) is completely monotonic.

We notice that both kernels a(t) = gq(t), 0 < q < 1 and a(t) given in (3) satisfy the
property (K).
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We recall that abstract integral Volterra equations of the form (4) appears in several
fields of wide interest. For instance, in the theory of viscoelastic materials [12], and
Navier-Stokes equations with memory [5], among others.

This paper is organized as follows: In Section 2, we briefly recall some results on
the measure of noncompactness and a fixed point theorem of Darbo type. We also
recall the notion of almost sectorial operator, deeply studied by Periago and Straub
[10]. Then, the definitions of resolvent and integral resolvent are presented. We refer
to the monograph of J. Prüss [12] for further information on the subject of resolvent
families of operators. It is worthwhile to note that the notion of integral resolvent that
we employ in this paper is slightly different than those considered in Prüss’s book. We
finish the section showing a connection between both definitions.

Section 3 contain the main result of this paper, namely Theorem 3.5. Under the
condition that A is an almost sectorial operator and a set of six hypothesis involving
the non-linear term f , and the integral resolvent family, we conclude the existence of at
least one globally attractive mild solution of (4) in the space of continuous and bounded
functions with values in the space Xα := D(Aα), endowed with an appropriate norm.
This main result is complemented with Proposition 3.6 that shows a practical criteria
in order to satisfy one of the more striking hypothesis of the main Theorem. Finally,
Section 4 shows as application, how the main result obtained in [9] can be deduced
from our findings.

2. Preliminaries

Let X be a complex Banach space with norm ‖· ‖. By B(x, r) we denote the closed
ball centered at x with radius r and by MX we denote the family of all nonempty
and bounded subsets of X. The subfamily consisting of all relatively compact sets is
denoted by NX . As usual, for a linear operator A, we denote by D(A) the domain of
A, and by R(z;A) := (zI −A)−1, z ∈ ρ(A) the resolvent operator of A. Moreover, we
denote by L(X) the space of all bounded linear operators from X to X with the usual
operator norm ‖· ‖L(X).

Definition 2.1. [2] A function µ :MX → R+ is said to be a measure of noncompact-
ness in X if it satisfies the following conditions:

(1) The set Kerµ := {Ω ∈MX : µ(Ω) = 0} is nonempty and Kerµ ⊂ NX ;
(2) Ω ⊂ Ω0 implies µ(Ω) ≤ µ(Ω0), for each Ω,Ω0 ∈MX ;
(3) µ(Conv(Ω)) = µ(Ω), where Conv(Ω) denotes the convex hull of Ω;
(4) µ(Ω) = µ(Ω), where Ω denotes the closure of Ω ∈MX ;
(5) µ(λΩ + (1− λ)Ω0) ≤ λµ(Ω) + (1− λ)µ(Ω0), for λ ∈ [0, 1] and Ω,Ω0 ∈MX ;
(6) If {Ωn} is a sequence of sets in MX such that Ωn+1 ⊂ Ωn, Ωn = Ωn,

with n = 1, 2, ..., and if lim
n→∞

µ(Ωn) = 0, then the intersection Ω∞ =
∞⋂
n=1

Ωn is

nonempty.

The following is a fixed point theorem of Darbo type for measures of noncompactness.

Lemma 2.2. [2] Let M be a nonempty, bounded, closed, and convex subset of a Banach
space X, and let H : M → M be a continuous mapping. Assume that there exists a
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constant k ∈ [0, 1), such that:

µ(H(Ω)) ≤ kµ(Ω),

for any nonempty subset Ω of M. Then H has a fixed point in M.

Next, we present a particular measure of noncompactness that will be useful to us
in this paper.
For any nonempty a bounded subset Y of the space BC(R+, X) and a positive number
T , we denote by ωT (x, ε) the modulus of continuity of a function x on the interval
[0, T ], where x ∈ Y and ε ≥ 0. Namely:

ωT (x, ε) = sup{||x(t)− x(s)|| : t, s ∈ [0, T ], |t− s| ≤ ε}.
We then write additionally

ωT (Y, ε) = sup{ωT (x, ε) : x ∈ Y },
ωT0 (Y ) = limε→0 ω

T (Y, ε),
ω0(Y ) = lim

T→∞
ωT0 (Y ),

and
diam(Y ) = sup{||x(t)− y(t)|| : x, y ∈ Y }.

Finally, consider the function µ defined on the family MBC(R+,X) by the formula:

(5) µ(Y ) = ω0(Y ) + lim sup
t→∞

diam(Y ).

It is known that µ is a measure of noncompactness [2].
Let S0

µ with 0 < µ < π be the open sector:

S0
µ = {z ∈ C \ {0} : |arg(z)| < µ}

and Sµ be its closure, that is:

(6) Sµ = {z ∈ C \ {0} : |arg(z)| ≤ µ} ∪ {0}.

Definition 2.3. [10] Let −1 < γ < 0 and 0 ≤ ω < π be given. By Θγ
ω(X) we denote

the family of all linear and closed operators A : D(A) ⊆ X → X, which satisfy:

(1) σ(A) ⊆ Sω, and
(2) for every ω < µ < π there exists a constant Cµ such that:

||R(z;A)||L(X) ≤ Cµ|z|γ, for all z ∈ C \ Sµ.

Definition 2.4. A linear operator A will be called an almost sectorial operator on X
if A ∈ Θγ

ω(X).

Given A ∈ Θγ
ω(X), we denote

Xα := D(Aα),

and ‖x‖α := ‖Aαx‖ for x ∈ D(Aα). The existence of the complex power Aα is a con-
sequence of the functional calculus developed in [10, Section 2]. See also [10, Theorem
3.2 and Proposition 3.3] for their main properties. In contrast to the case of sectorial
operators, having 0 ∈ ρ(A) does not imply that the complex powers A−α with Reα > 0
are bounded. However, the operator A−α belongs to L(X) whenever Reα > 1 +γ. See
[10, Proposition 3.4].
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Consider A ∈ Θγ
ω(X) with −1 < γ < 0 and 0 < ω < π

2
. We denote for t ∈ S0

π
2
−ω,

(7) T (t) :=
1

2πi

∫
Γθ

e−tzR(z;A)dz,

where ω < θ < µ < π
2
− |arg t| and Γθ denotes the path

{re−iθ : r > 0 } ∪ {reiθ : r > 0},

oriented such that S0
θ lies to the left of Γθ. We have the following properties on T (t).

For a proof, see [10, Theorem 3.9].

(i) T (t) forms an analytic semigroup in S0
π
2
−ω and

dn

dtn
T (t) = (−A)nT (t), for all t ∈ S0

π
2
−ω.

(ii) There exists a constant C0 = C0(γ) > 0 such that

||T (t)||L(X) ≤ C0t
−γ−1, for all t > 0.

(iii) The range R(T (t)) of T (t) for each t ∈ S0
π
2
−ω is contained in D(A∞). In

particular for all β ∈ C with Reβ > 0, R(T (t)) ⊂ D(Aβ) and

AβT (t)x =
1

2πi

∫
Γθ

zβe−tzR(z;A)xdz, for all x ∈ X,

and hence there exists a constant C ′ = C ′(γ, β) > 0 such that:

||AβT (t)||L(X) ≤ C ′t−γ−Reβ−1, for all t > 0.

(iv) If β > 1+γ, then D(Aβ) ⊂ ΣT , where ΣT is the continuity set of the semigroup
{T (t)}t≥0. That is:

ΣT = {x ∈ X : lim
t→0

T (t)x = x}.

The relation between the resolvent operators of A and the semigroup T (t) is char-
acterized by the following Lemma:

Lemma 2.5. [10, Theorem 3.13] Let A ∈ Θγ
ω(X), with −1 < γ < 0 and 0 < ω < π

2
.

Then, for every λ ∈ C, with Reλ > 0, we have:

(8) R(λ;−A) =

∫ ∞
0

e−λtT (t)dt.

In other words, if A ∈ Θγ
ω(X) then −A is the generator of an analytic semigroup of

growth order γ + 1.

Definition 2.6. [12] Let B be a closed linear operator with domain D(B) ⊂ X and
a ∈ L1

loc(R+). A family {S(t)}t≥0 of bounded and linear operators in X is called a
resolvent with generator B if the following conditions are satisfied:

(1) S(t) is strongly continuous on R+ and S(0) = I;
(2) S(t) commutes with B, which means that S(t)D(B) ⊂ D(B) and BS(t)x =

S(t)Bx, for all x ∈ D(B) and t ≥ 0;
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(3) the resolvent equation holds:

(9) S(t)x = x+

∫ t

0

a(t− s)BS(s)xds for all x ∈ D(B), t ≥ 0.

Definition 2.7. Let B be a closed linear operator with domain D(B) ⊂ X and
a ∈ C(R+). A strongly continuous family {P (t)}t≥0 of bounded linear operators in X
is called an integral resolvent with generator B if the following conditions are satisfied:

(1) P (0) = a(0)I;
(2) P (t) commutes with B;
(3) the integral resolvent equation holds:

(10) P (t)x = a(t)x+

∫ t

0

a(t− s)BP (s)xds for all x ∈ D(B), t ≥ 0.

We recall that the finite convolution of two functions f and g is denoted by:

(f ∗ g)(t) =

∫ t

0

f(t− s)g(s)ds.

Definition 2.8. A resolvent S(t) (resp. an integral resolvent P (t)) is called analytic if
the function S(·) : R+ → B(X) (resp. P (·) : R+ → B(X)) admits a analytic extension
to a sector Σ(0, θ) := {z ∈ C : |arg(z)| < θ, θ ∈ (0, π

2
)}

An analytic resolvent S(t) (resp. an integral resolvent P (t)) is said to be of analyt-
icity type (ω0, θ0) if for each θ < θ0 and ω > ω0 there is M = M(ω, θ) such that:

‖S(z)‖ ≤MeωRez (resp.‖P (z)‖ ≤MeωRez).

Directly from [12, Theorem 0.1, p.5] we have the following result.

Proposition 2.9. Let P (t) be an analytic integral resolvent of type (ω0, θ0) and a(t) of

exponential growth. Let P̂ (t) be denote the Laplace tranform of P (t). Then, for each
ω > ω0 and θ < θ0:

(11) ‖P̂ (λ)‖ ≤ C

|ω − λ|
, λ ∈ Σ

(
ω, θ +

π

2

)
, for some C = C(ω, θ) > 0.

The relation between resolvent and integral resolvent families is given in the following
proposition.

Proposition 2.10. Suppose that a ∈ C1(R+), then

(12)

∫ t

0

P (s)xds =

∫ t

0

a(t− s)S(s)xds, t > 0, x ∈ X.

In particular, if B is the generator of a resolvent family, then B is also the generator
of a integral resolvent family, given by the formula

(13) P (t)x = a(0)S(t)x+

∫ t

0

a′(t− s)S(s)xds, t > 0, x ∈ X.
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Proof. Using the identities (9) and (10), we have in view of the commutativity of the
convolution

(S ∗ P )(t) = (I ∗ P )(t) +B(a ∗ S ∗ P )(t) = (I ∗ P )(t) + S ∗ (B(a ∗ P ))(t)
= (I ∗ P )(t) + (S ∗ [P − a])(t) = (I ∗ P )(t) + (S ∗ P )(t)− (S ∗ a)(t).

Therefore, we obtain (12). Differentiating (12) with respect to t, we obtain (13).
�

3. Main result

We first consider the linear problem
(14) x(t)− h(t) =

∫ t

0

a(t− s)(−A)[x(s)− h(s)]ds+

∫ t

0

a(t− s)f(s)ds+ x0 − h(0),

x(0) = x0,

where a ∈ L1
loc(R+), A is a closed linear operator defined on a Banach space X,

f : R+ → X and h : R+ → [D(A)] are given functions and x0 ∈ X. By a strong
solution of (14) we mean a function x ∈ C(R+; [D(A)]) that satisfies (14).

Definition 3.1. Let a ∈ C1(R+) be given. Suppose that −A is the generator of a
resolvent {S(t)}t≥0. Given functions f : R+ × X → X h : R+ × X → [D(A)] and
x0 ∈ X, we call the continuous function x : R+ → X given by

(15) x(t) = S(t)(x0 − h(0)) + h(t) +

∫ t

0

P (t− s)f(s)ds, t ≥ 0,

a mild solution of (14), where S and P are given by (9) and (10) respectively.

Proposition 3.2. Let f : R+ × X → [D(A)] be given. If x0 ∈ D(A) then each mild
solution is a strong solution.

Proof. Define B = −A and x1 := x0 − h(0). Since x0 ∈ D(A), where A is closed, and
f(t) ∈ D(A) for all t ≥ 0, we have S(t)x1 ∈ D(A) and (P ∗ f)(t) ∈ D(A) for all t ≥ 0,
respectively. Therefore x(t) ∈ D(A) for all t ≥ 0. Then by (17), properties of the
convolution, Definition 2.6 and Definition 2.7 we obtain

(a ∗B(x− h))(t) = (a ∗B[Sx1 + P ∗ f ])(t) = (a ∗BS)(t)x1 + (a ∗BP ∗ f)(t)

= S(t)x1 − x1 + ((P − a) ∗ f)(t) = x(t)− h(t)− x1 − (a ∗ f)(t)

which proves the proposition.
�

Consider the following nonlinear abstract integral equation:

(16)


x(t)− h(t, x(t)) =

∫ t

0

a(t− s)(−A)[x(s)− h(s, x(s))]ds

+

∫ t

0

a(t− s)f(s, x(s))ds+ x0 − h(0, x0),

x(0) = x0,
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where a ∈ L1
loc(R+), A is an almost sectorial operator on a complex Banach space X,

f : R+ × X → X and h : R+ × X → [D(A)] are given functions and x0 ∈ X. By a
strong solution of (16) we mean a function x ∈ C(R+; [D(A)]) that satisfies (16).

Given and almost sectorial operator A there exists kernels a ∈ C1(R+) such that
B := −A is the generator of simultaneously a resolvent S(t) and an integral resolvent
P (t). We denote the set of all such kernels by K.

For example, if A is the generator on an almost sectorial operator we know that
−A is the generator of an analytic semigroup T (t), and is explicitly given by the
formula (7). Then, by [12, Corollary 2.4, p.56] we obtain that the class of kernels
a ∈ C((0,∞)) ∩ L1

loc(R+) that are completely monotonic, belongs to K.
Now, we give the definition of mild solution to the equation (16).

Definition 3.3. Let A be an almost sectorial operator and a ∈ K. Given functions
f : R+×X → X h : R+×X → [D(A)] and x0 ∈ X, we say that a continuous function
x : R+ → X that satisfies the equation

(17) x(t) = S(t)(x0 − h(0, x0)) + h(t, x(t)) +

∫ t

0

P (t− s)f(s, x(s))ds, t ≥ 0,

is a mild solution of (16), where S and P are given by (9) and (10) respectively.

Definition 3.4. A mild solution x(t) of (16) is said to be globally attractive if:

lim
t→∞

(x(t)− y(t)) = 0,

for any mild solution y(t) of (16).

Let BC(R+, Xα) be denote the Banach space consisting of all real functions defined
as bounded and continuous from R+ to Xα with the norm ‖x‖∞ = sup

t≥0
‖x(t)‖α. Recall

that Xα = D(Aα). The main result of this paper is the following theorem.

Theorem 3.5. Let A ∈ Θγ
ω(X), with −1 < α + γ < 0, 0 < α < 1 and 0 < ω < π

2
and

a ∈ K. Assume that:

(H1) f : R+ ×Xα → X is continuous, and there exists a positive function ν : R+ →
R+ such that:

(18)

{
||f(t, x)|| ≤ ν(t) for all x ∈ X;
the function s→ ||AαP (t− s)||ν(s) belongs to L1([0, t[,R+), and

(19) lim
t→∞

η(t) := lim
t→∞

∫ t

0

||AαP (t− s)||ν(s)ds = 0.

(H2) h : R+×Xα → Xα is bounded, continuous and there exist a constant L ∈ (0, 1)
such that:

||h(t1, x(t1))− h(t2, x(t2))||α ≤ L(|t1 − t2|+ ||x(t1)− x(t2)||α),

for all x ∈ BC(R+, Xα).
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(H3) For each nonempty, bounded set D ⊂ BC(R+, Xα), the family of functions

{t→ h(t, ϕ(t)) : ϕ ∈ D}

is equicontinuous.
(H4) The operator τ → AαP (τ)x is bounded.
(H5) The resolvent family {S(t)}t≥0 is uniformly continuous for t > 0 and

sup
t≥0
||AαS(t)x|| <∞, for all x ∈ X.

(H6)

lim
τ→t

∫ t

0

||Aα(P (τ − s)− P (t− s))||ν(s)ds = 0, ∀t ≥ 0.

Then:

(1) The problem (16) has at least a mild solution on BC(R+, Xα).
(2) Mild solutions of (16) are globally attractive.

Proof. Consider the operator H defined as follows:

(20) (Hx)(t) = S(t)(x0 − h(0, x0)) + h(t, x(t)) +

∫ t

0

P (t− s)f(s, x(s))ds, t ≥ 0.

Step 1: We prove that there exists a ball

Br = {x ∈ BC(R+, Xα) : ||x||∞ ≤ r}

with radius r and centered at 0, such that H(Br) ⊂ Br. In fact, for any r > 0
and x ∈ Br, in view of (H2),

(21) ||h(t, x(t))||α ≤ ||h(t, x(t))− h(t, 0)||α + ||h(t, 0)||α ≤ Lr +M1,

where M1 := supt∈R+
||h(t, 0)||α <∞ since h is bounded. Moreover, by (19) in

(H2), we get sup
t∈R+

η(t) ≤ K for a positive constant K. Let x ∈ Br be arbitrary,

then by (21) and (H5)

||H(x)(t)||α ≤ ||S(t)(x0 − h(0, x0))||α + ||h(t, x(t))||α +

∫ t

0

||P (t− s)f(s, x(s))||αds

≤ ||AαS(t)(x0 − h(0, x0))||+ Lr +M1 +

∫ t

0

||AαP (t− s)f(s, x(s))||ds

≤ sup
t≥0
||AαS(t)(x0 − h(0, x0)||+ Lr +M1 + sup

t≥0

∫ t

0

||AαP (t− s)ν(s)||ds.

Choose r such that:

r ≥
sup
t≥0
||AαS(t)(x0 − h(0, x0))||+M1 +K

1− L
,

then:

||(Hx)(t)||α ≤ r,

that is, H(Br) ⊂ Br.
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Step 2: We prove that the operator H is continuous on Br. Indeed, let (xn)n∈N
be a sequence in Br, such that xn → x ∈ Br, as n→∞. Then:

(22) ‖f(s, xn(s))− f(s, x(s))‖ → 0, n→∞,

because the function f is continuous on R+ ×Xα. Given T > 0 and for every
t ∈ [0, T ] fixed, using (H2) and (H4) we obtain:

||H(xn)(t)−H(x)(t)||α ≤ ||h(t, xn(t))− h(t, x(t))||α

+

∫ t

0

||P (t− s)(f(s, xn(s))− f(s, x(s)))||αds

≤ L||xn − x||∞ +

∫ t

0

||AαP (t− s)|| ||(f(s, xn(s))− f(s, x(s)))||ds.(23)

Now, consider gn(s) = ||AαP (t− s)|| ||(f(s, xn(s))− f(s, x(s))||. By (22), we
have:

lim
n→∞

gn(s) = 0,

and by (H1)

gn(s) ≤ 2||AαP (t− s)||ν(s) ∈ L1([0, t[,R+)

which follows by (18). By the Lebesgue dominated convergence theorem, we
conclude that

lim
n→∞

∫ t

0

||AαP (t− s)|| ||(f(s, xn(s))− f(s, x(s))||ds = 0,

and clearly limn→∞ L||xn − x||∞ = 0. Therefore, by (23) we have:

lim
n→∞

||H(xn)(t)−H(x)(t)||α = 0.

This proves that H is continuous en Br.
Step 3: Let Ω be an arbitrary nonempty subset of Br. We prove that:

µ(H(Ω)) ≤ Lµ(Ω).

Indeed, let us choose x ∈ Ω and t1, t2 with |t1 − t2| ≤ ε. For 0 < t1 < t2 ≤ T ,
we have:

(24)

||H(x)(t2)−H(x)(t1)||α ≤ ||(S(t2)− S(t1))(x0 − h(0, x0))||α

+||h(t, x(t2))− h(t, x(t1))||α
+||
∫ t1

0

(P (t2 − s)− P (t1 − s))f(s, x(s))ds||α

+

∫ t2

t1

||AαP (t2 − s)||ν(s)ds

= I1 + I2 + I3 + I4.

As a consequence of the continuity of {S(t)}t≥0 in the operator topology for
t > 0, we have that

I1 → 0, as t2 → t1.
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By (H3), we see that:

I2 → 0, as t2 → t1.

For I3, we have:

||
∫ t1

0

(P (t2 − s)− P (t1 − s))f(s, x(s))ds||α ≤
∫ t1

0

||Aα(P (t2 − s)− P (t1 − s))||ν(s)ds

and by (H6), we have that:

I3 → 0, as t2 → t1.

Finally, by (H1), (18), and by continuity of the integral, we have:

I4 ≤
∫ t2

t1

||AαP (t− s)||ν(s)ds→ 0 as t2 → t1.

Thus, we obtain:
ωT0 (H(Ω)) = 0.

Consequently, we have:

(25) ω0(H(Ω)) = 0.

Now, by our assumptions, for arbitrary fixed t ∈ R+ and x, y ∈ Ω we deduce
that:

||Hx(t)−Hy(t)||α
≤ ||h(t, x(t))− h(t, y(t))||α +

∫ t

0

||P (t− s)(f(s, x(s))− f(s, y(s))ds||αds

≤ L||x(t)− y(t)||α + 2M2η(t).

By (19), we have:

(26) lim sup
t→∞

diam(H(Ω))(t) ≤ L lim sup
t→∞

diam Ω(t).

Therefore, using the measure of noncompactness µ defined in (5) and using (25)
and (26), we obtain:

(27) µ(H(Ω)) ≤ Lµ(Ω).

Step 4: We prove that the conclusion (1) is true. In fact, since 0 < L < 1, in
view of (27) and Lemma 2.2, we deduce that the operator H has a fixed point
x in the ball Br. Hence, equation (16) has at least one mild solution x(t).

Step 5: We prove that the conclusion (2) is true.
Indeed, for any other mild solution y(t) of equation (16), we have:

||x(t)− y(t)||α ≤ ||Hx(t)−Hy(t)||α
≤ L||x(t)− y(t)||α + 2M2η(t).

Then, by (19), we have:

lim
t→∞
||x(t)− y(t)||α ≤

2M2

1− L
lim
t→∞

η(t) = 0.

That is, mild solutions of (16) are globally atracttive.

�
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We finish this section with the following practical criteria in order to verify condition
(H6).

Proposition 3.6. Let A ∈ Θγ
ω(X), with −1 < γ < 0 and 0 < ω < π

2
, ω > 0 be fixed,

a ∈ C1(R+) such that a(0) = 0 and A the generator of an analytic integral resolvent
P (t). Then:

lim
τ→t

∫ t

0

||Aα(P (τ − s)− P (t− s)||ν(s)ds = 0, ∀t > 0, α ∈ (0, 1).

Proof. Since Aα = A−(1−α)A, where A−(1−α) ∈ L(X), for α ∈ (0, 1), it is enough to
prove that:

lim
τ→t

∫ t

0

||A(P (τ − s)− P (t− s))||ν(s)ds = 0, ∀t > 0.

We first note the identity

A(P (r)− P (s)) = A

∫ r

s

P ′(τ)dτ =

∫ r

s

AP ′(τ)dτ.

By means of Lemma 2.1 in [12] we can obtain the following estimate

(28) | 1

â(λ)
| ≤ ec(|λ−ω|

ς)

on a sector Σ(ω, π
2

+ θ) where ω > ω0, θ < θ0 are fixed but arbitrary and where
ς := π

π+2θ′
with θ < θ′ < θ0. See also [12, Formula (2.19) p. 58]. Note that

(29) AP ′(t) =
1

2πi

∫
Γ

eλtAP̂ ′(λ)dλ =
1

2πi

∫
Γ

eλtAλP̂ (λ)dλ,

because a(0) = 0, and being Γ = Γ1 ∪ Γ2, defined by:

Γ1 = rei(
π
2

+θ) + ω, Γ2 = Reiϕ + ω,

with R = t−(1−ς)−1
, r > R and ϕ ∈ [0, π

2
+ θ]. Taking Laplace’s transform in both sides

of (10), we obtain:

P̂ (λ) =

(
1

â(λ)
+ A

)−1

.

Using the identity I =
(

1
â(λ)

+ A
)
P̂ (λ) we have AλP̂ (λ) = λ − λ

â(λ)
P̂ (λ). Therefore,

from (29) and Cauchy’s theorem, we get

AP ′(t) =
1

2πi

∫
Γ

eλtAλP̂ (λ)dλ = − 1

2πi

∫
Γ

eλt
[
λ

â(λ)
P̂ (λ)− λ

]
dλ

= − 1

2πi

∫
Γ

eλt
λ

â(λ)
P̂ (λ)dλ.
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Now, by (11) and (28) we conclude that

‖AP ′(t)‖ =
1

2π

∫
Γ

|eλt| |λ|
|â(λ)|

‖P̂ (λ)‖|dλ|

≤ C

2π

∫
Γ

eReλt
|λ|
|λ− ω|

ec|λ−ω|
ς |dλ|

=
C

2π

∫
Γ1

eReλt
|λ|
|λ− ω|

ec|λ−ω|
ς |dλ|+ C

2πi

∫
Γ2

eReλt
|λ|
|λ− ω|

ec|λ−ω|
ς |dλ|

=
C

2π

∫ ∞
R

eωte−rt sin θ |ω + r|
r

ecr
ς

dr +
C

2πi

∫ π
2

+θ

0

eωte−Rt cosϕω +R

R
ecR

ς

Rdϕ

≤ Ceωt

2π

[
|ω|
∫ ∞
R

e−rt sin θ ecr
ς dr

r
+

∫ ∞
R

e−rt sin θecr
ς

dr

+R

∫ π
2

+θ

0

eRt cosϕecR
ς

dϕ+ |ω|
∫ π

2
+θ

0

eRt cosϕecR
ς

dϕ

]
=:

Ceωt

2π
[(I) + (II) + (III) + (IV )].

We observe that the term (I) appeared in [12], page 59 and can be estimated by t
π
2θ′ .

For (II), we use the change of variable b = t sin θ, s = rb, and the identity 12 on page
710 of [11], together with the fact that 0 < ς < 1. We deduce that the integral is finite.
Consequently, we can define, for all t > 0:

Ψ(t) :=
Ceωt

2πi

[
|ω|
∫ ∞
R

e−rt sin θ e
crς

r
dr +

∫ ∞
R

e−rt sin θecr
ς

dr

+R

∫ π
2

+θ

0

eRt cosϕecR
ς

dϕ+ |ω|
∫ π

2
+θ

0

eRt cosϕecR
ς

dϕ

]
.

Therefore Ψ is a positive continuous function satisfying ‖AP ′(t)‖ ≤ Ψ(t) for all t > 0.
In this way, we conclude that:

||A(P (τ − s)− P (t− s))|| = ||
∫ τ−s

t−s
AP ′(r)dr|| ≤

∫ τ−s

t−s
‖AP ′(r)‖dr

≤
∫ τ−s

t−s
Ψ(r)dr =: Φ(τ).

where Φ is positive, increasing and Φ(τ) → 0 as τ → t. Therefore, by the monotone
convergence theorem, we obtain:

lim
τ→t

∫ t

0

||A(P (τ − s)− P (t− s))||ν(s)ds ≤ limτ→t

∫ t

0

∫ τ−s

t−s
Ψ(r)ν(s)drds

=

∫ t

0

[
lim
τ→t

∫ τ−s

t−s
Ψ(r)

]
ν(s)drds

=

∫ t

0

[
lim
τ→t

Φ(τ)
]
ν(s)drds = 0.

�
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4. An application

For 0 < q < 1, we consider the problem

(30)

{
Dq
t [x(t)− h(t, x(t))] = (−A)[x(t)− h(t, x(t))] + f(t, x(t))

x(0) = x0,

where Dq
t denotes the fractional derivative of order q > 0 in the sense of Caputo and

A ∈ Θγ
ω(X).

Recall that, by definition, we have for any differentiable function f that Dq
t f(t) :=

(g1−q ∗ f ′)(t) where gβ(t) := tβ−1

Γ(β)
, β > 0. Then, we may convolve with gq both sides in

(30) and obtain the equivalent problem

(31)


x(t)− h(t, x(t)) =

∫ t

0

gq(t− s)(−A)[x(s)− h(s, x(s))]ds

+

∫ t

0

gq(t− s)f(s, x(s))ds+ x0 − h(0, x0),

x(0) = x0,

which takes the form of the abstract model (16) with a(t) = gq(t). Therefore, our first
application retrieve the main result in [9].

Corollary 4.1. Let −1 < α + γ < 0 and 0 < α < β < 1 be given. Assume that:

(F1) f : R+ ×Xα → X is continuous, and there exists a positive function ν : R+ →
R+ such that:

(32)

{
||f(t, x)|| ≤ ν(t),

the function s→ ν(s)

(t−s)1+q(γ+q) belongs to L1([0, t[,R+),

(33) lim
t→∞

η(t) := lim
t→∞

∫ t

0

ν(s)

(t− s)1+q(γ+α)
ds = 0

(F2) The function h : R+ × Xα → Xα is bounded, continuous and there exists a
constant L ∈ (0, 1) such that:

||h(t1, x(t1))− h(t2, x(t2))||α ≤ L(|t1 − t2|+ ||x(t1)− x(t2)||α).

(F3) For each nonempty, bounded set D ⊂ BC(R+, Xα), the family of functions

{t→ h(t, ϕ(t)) : ϕ ∈ D}
is equicontinuous.

Then:

(1) For every x0 ∈ D(Aβ) with β > 1 + γ, the problem (30) has at least mild
solution on BC(R+, Xα).

(2) All solution are globally attractive.

Proof. Since A ∈ Θγ
ω(X), the operator A generates an analytic semigroup {T (t)}t≥0.

Let P (t) and S(t) be operators defined by:

P (t) := tq−1Pq(t)
S(t) := Sq(t),
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where:

Sq(t)x =

∫ ∞
0

Ψq(σ)T (σtq)xdσ, t ∈ S0
π
2
−ω, x ∈ X,

Pq(t)x =

∫ ∞
0

qσΨq(σ)T (σtq)xdσ, t ∈ S0
π
2
−ω, x ∈ X,

and Ψq(σ) is the function of Wright type given by

Ψq(z) :=
∞∑
n=0

(−z)n

n!Γ(−qn+ 1− q)
=

1

π

∞∑
n=1

(−z)n

(n− 1)!
Γ(nq) sin(nπq), z ∈ C.

Define a(t) = gq(t). It is not difficult to see that S(t) is a resolvent family and P (t) is
an integral family, both generated by −A. We recall from [9] the following properties:

(a) For −1 < r <∞, with q > 0 and −1 < α + γ < 0, we have:
(1) Ψq(t) ≥ 0, t > 0,

(2)
∫∞

0
Ψq(t)t

rdt = Γ(1+r)
Γ(1+qr)

, and the following estimates hold:

(34)

||Sq(t)x|| ≤ C0Γ(−γ)
Γ(1−q(1+γ))

t−q(1+γ)||x||,
||Pq(t)x|| ≤ qC0Γ(1−γ)

Γ(1−qγ)
t−q(1+γ)||x||,

||AαPq(t)x|| ≤ qC′Γ(1−γ−α)
Γ(1−q(γ+α))

t−q(1+γ+α)||x||,

(b) For t > 0, Pq(t) and Sq(t) are continuous in the uniform operator topology.

With this, the mild solution of equation (30) is a solution of the problem:

(35) x(t) = Sq(t)(x0−h(0, x0))+h(t, x(t))+

∫ t

0

(t−s)q−1Pq(t−s)f(s, x(s))ds, t ≥ 0,

We will prove that, with these ingredients, all the hypothesis of Theorem 3.5 are
satisfied. Indeed:

(i) For (H1), we prove that the function s→ ||AαPq(t−s)||ν(s) belongs to L1([0, t[,R+).
In fact, by (34), we have:

||Aα(t− s)q−1Pq(t− s)||ν(s) ≤ C
ν(s)

(t− s)1+q(γ+q)
,

and in view of (32), the claim is proved. Also, by (32) and (33), we have:

lim
t→∞

∫ t

0

||AαP (t− s)||ν(s)ds ≤ lim
t→∞

∫ t

0

ν(s)

(t− s)1+q(γ+α)
ds = 0.

(ii) The hypotheses (H2) and (H3) are the same than (F2) and (F3).
(iii) The hypothesis (H4) is a consequence of the estimates (34).
(iv) We prove (H5). Indeed, by the property a), we obtain

||AαSq(t)x|| ≤
∫ ∞

0

Ψq(σ)||AαT (σtq)x||dσ

≤ K

∫ ∞
0

Ψq(σ)(σtq)−γ−α−1dσ

≤ K ′
∫ ∞

0

Ψq(σ)σ−γ−α−1dσ,
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with r = −γ − α− 1 > −1, by hypothesis. Then, by property a)(2):

sup
t≥0
||AαSq(t)x|| <∞.

(v) We will prove (H6). In fact, we have∫ t1

0

||Aα((t2 − s)q−1Pq(t2 − s)− (t1 − s)q−1Pq(t1 − s))||ν(s)ds

=

∫ t1

0

||(t2 − s)q−1Pq(t2 − s)− (t1 − s)q−1Pq(t1 − s)||αν(s)ds

≤
∫ t1

0

||Pq(t2 − s)[(t2 − s)q−1 − (t1 − s)q−1]||αν(s)ds

+

∫ t1

0

||(t1 − s)q−1[Pq(t2 − s)− Pq(t1 − s)||αν(s)ds.

By (34), we obtain:∫ t1

0

||Pq(t2 − s)[(t2 − s)q−1 − (t1 − s)q−1]||αν(s)ds

≤ qC ′ Γ(1−γ−α)
Γ(1−q(γ+α)

∫ t1

0

|(t2 − s)q−1 − (t1 − s)q−1|
(t2 − s)q−1

ν(s)

(t2 − s)1+q(γ+α)
ds.

Therefore, by (32), we get:∫ t1

0

||Pq(t2 − s)[(t2 − s)q−1 − (t1 − s)q−1]||αν(s)ds→ 0, as t2 → t1.

Furthermore, for ε > 0, small enough, we obtain:∫ t1

0

||(t1 − s)q−1[Pq(t2 − s)− Pq(t1 − s)||αν(s)ds

≤ q

∫ t1

0

∫ ∞
0

σΨq(σ)(t1 − s)q−1||T ((t2 − s)qσ)− T ((t1 − s)qσ||αν(s)dσds

≤ q

∫ t1−2ε

0

∫ ∞
0

σΨq(σ)(t1 − s)q−1||T ((t2 − s)qσ − εqσ)− T ((t1 − s)qσ − εqσ)||×

×||AαT (εqσ)||ν(s)dσds

+M2

∫ t1

t1−2ε

(
(t1 − s)q−1

(t1 − s)q(α+γ+1)
+

(t1 − s)q−1

(t2 − s)q(α+γ+1)

)
ν(s)ds

≤ qC ′

εq(γ+q+1)

∫ t1−2ε

0

∫ ∞
0

σ−(γ+q)Ψq(σ)||T ((t2 − s)qσ − εqσ)− T ((t1 − s)qσ − εqσ)||×

× ν(s)
(t1−s)1−q dσds

+M2

∫ t1

t1−2ε

(
(t1 − s)q−1

(t1 − s)q(α+γ+1)
+

(t1 − s)q−1

(t2 − s)q(α+γ+1)

)
ν(s)ds

= J1 + J2.

The continuity of the function t→ ||T (t)|| for t ∈ (0, T ) implies that:

J1 → 0 as t2 → t1.

Furthermore, it is easy to see that:

J2 → 0 as ε→ 0.
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Therefore:

lim
t2→t1

∫ t1

0

||Aα((t2 − s)α−1Pα(t2 − s)− (t1 − s)α−1Pq(t1 − s))||ν(s)ds = 0.

�
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